skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wang, Ji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Discher, Dennis (Ed.)
    Abstract Accurate positioning of the mitotic spindle within the rounded cell body is critical to physiological maintenance. Mitotic cells encounter confinement from neighboring cells or the extracellular matrix (ECM), which can cause rotation of mitotic spindles and tilting of the metaphase plate (MP). To understand the effect of confinement on mitosis by fibers (ECM confinement), we use flexible ECM-mimicking nanofibers that allow natural rounding of the cell body while confining it to differing levels. Rounded mitotic bodies are anchored in place by actin retraction fibers (RFs) originating from adhesions on fibers. We discover that the extent of confinement influences RF organization in 3D, forming triangular and band-like patterns on the cell cortex under low and high confinement, respectively. Our mechanistic analysis reveals that the patterning of RFs on the cell cortex is the primary driver of the MP rotation. A stochastic Monte Carlo simulation of the centrosome, chromosome, membrane interactions, and 3D arrangement of RFs recovers MP tilting trends observed experimentally. Under high ECM confinement, the fibers can mechanically pinch the cortex, causing the MP to have localized deformations at contact sites with fibers. Interestingly, high ECM confinement leads to low and high MP tilts, which we mechanistically show to depend upon the extent of cortical deformation, RF patterning, and MP position. We identify that cortical deformation and RFs work in tandem to limit MP tilt, while asymmetric positioning of MP leads to high tilts. Overall, we provide fundamental insights into how mitosis may proceed in ECM-confining microenvironments in vivo. 
    more » « less
  2. Sallum, Stephanie; Sanchez-Bermudez, Joel; Kammerer, Jens (Ed.)
  3. ABSTRACT WASP-12 b is an ultra-hot Jupiter of special interest for atmospheric studies since it is on an inspiraling orbit in an extreme environment of intense radiation and circumstellar gas. Previously claimed detections of active mass-loss from this planet are controversial across the literature. To address this controversy, we obtain two new transit observations of WASP-12 b with the optical high-resolution PEPSI spectrograph on the Large Binocular Telescope. Contrary to previous work, we do not observe planetary H$$\alpha$$ absorption and rule out the amplitude of previously reported detections. Our non-detection may be limited by the sensitivity of our data or could indicate weaker mass-loss than suggested by previous studies. We conduct injection-recovery experiments to place constraints on the radial extent of WASP-12 b’s escaping atmosphere as probed by Balmer lines, but find that our data do not have the sensitivity to probe down to the planet’s Roche lobe. Using physically motivated models of atmospheric escape, we explore upper limit constraints on the planet’s mass-loss rate and deem the data quality in the wavelength regime of Balmer lines insufficient to determine a physically meaningful constraint. We also conduct a spectral survey of other optical absorbers to trace atmospheric circulation but detect no additional absorption. We conclude that previous claims of H$$\alpha$$ absorption from the atmosphere of WASP-12 b should be reevaluated. Given the anticipated line strength of Balmer/optical features, observing the atmosphere of this faint target will require stacking more observations even with the largest telescope facilities available. 
    more » « less
  4. The acentrosomal spindle apparatus has kinetochore fibers organized and converged toward opposite poles; however, mechanisms underlying the organization of these microtubule fibers into an orchestrated bipolar array were largely unknown. Kinesin-14D is one of the four classes of Kinesin-14 motors that are conserved from green algae to flowering plants. In Arabidopsis thaliana, three Kinesin-14D members displayed distinct cell cycle-dependent localization patterns on spindle microtubules in mitosis. Notably, Kinesin-14D1 was enriched on the midzone microtubules of prophase and mitotic spindles and later persisted in the spindle and phragmoplast midzones. The kinesin-14d1 mutant had kinetochore fibers disengaged from each other during mitosis and exhibited hypersensitivity to the microtubule-depolymerizing herbicide oryzalin. Oryzalin-treated kinesin-14d1 mutant cells had kinetochore fibers tangled together in collapsed spindle microtubule arrays. Kinesin-14D1, unlike other Kinesin-14 motors, showed slow microtubule plus end-directed motility, and its localization and function were dependent on its motor activity and the novel malectin-like domain. Our findings revealed a Kinesin-14D1-dependent mechanism that employs interpolar microtubules to regulate the organization of kinetochore fibers for acentrosomal spindle morphogenesis. 
    more » « less
  5. Abstract We present an atmospheric retrieval analysis on a set of young, cloudy, red L dwarfs—CWISER J124332.12+600126.2 (BD+60 1417B) and WISEP J004701.06+680352.1 (W0047)—using the Brewster retrieval framework. We also present the first elemental abundance measurements of the young K-dwarf (K0) host star, BD+60 1417, using high-resolution (R= 50,000) spectra taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument on the Large Binocular Telescope. In the complex cloudy L-dwarf regime the emergence of condensate cloud species complicates retrieval analysis when only near-infrared data are available. We find that for both L dwarfs in this work, despite testing three different thermal profile parameterizations we are unable to constrain reliable abundance measurements and thus the carbon-to-oxygen ratio. While we cannot conclude what the abundances are, we can conclude that the data strongly favor a cloud model over a cloudless model. We note that the difficulty in retrieval constraints persists regardless of the signal-to-noise ratio of the data examined (S/N ∼ 10 for CWISER BD+60 1417B and 40 for WISEP W0047). The results presented in this work provide valuable lessons about retrieving young, low-surface-gravity cloudy L dwarfs. This work provides continued evidence of missing information in models and the crucial need for JWST to guide and inform retrieval analysis in this regime. 
    more » « less
  6. ABSTRACT We explore the prospects for Twinkle to determine the atmospheric composition of the nearby terrestrial-like planet LTT 1445 Ab, including the possibility of detecting the potential biosignature ammonia (NH3). At a distance of 6.9 pc, this system is the second closest known transiting system and will be observed through transmission spectroscopy with the upcoming Twinkle mission. Although LTT 1445 Ab has been suggested to be a candidate for a Hycean world, constraints on the interior composition based on its mass and radius suggests that the planet lacks a substantial water layer, and thus the proposed Hycean scenario is disfavoured. We use PETITRADTRANS and a Twinkle simulator to simulate transmission spectra for the more likely scenario of a cold Haber world for which NH3 is considered to be a biosignature. We study the detectability under different scenarios: varying hydrogen fraction, concentration of ammonia, and cloud coverage. We find that ammonia can be detected at an ∼3σ level for optimal (non-cloudy) conditions with 25 transits and a volume mixing ration of 4.0 ppm of NH3. We provide examples of retrieval analysis to constrain potential NH3 and H2O in the atmosphere. Our study illustrates the potential of Twinkle to characterize atmospheres of potentially habitable exoplanets. 
    more » « less
  7. Abstract With the launch of the JWST, we will obtain more precise data for exoplanets than ever before. However, these data can only inform and revolutionize our understanding of exoplanets when placed in the larger context of planet–star formation. Therefore, gaining a deeper understanding of their host stars is equally important and synergistic with the upcoming JWST data. We present detailed chemical abundance profiles of 17 FGK stars that will be observed in exoplanet-focused Cycle 1 JWST observer programs. The elements analyzed (C, N, O, Na, Mg, Si, S, K, and Fe) were specifically chosen as being informative to the composition and formation of planets. Using archival high-resolution spectra from a variety of sources, we perform an LTE equivalent width analysis to derive these abundances. We look to literature sources to correct the abundances for non-LTE effects, especially for O, S, and K, where the corrections are large (often >0.2 dex). With these abundances and the ratios thereof, we will begin to paint clearer pictures of the planetary systems analyzed by this work. With our analysis, we can gain insight into the composition and extent of migration of Hot Jupiters, as well as the possibility of carbon-rich terrestrial worlds. 
    more » « less
  8. Abstract Background In the CRISPR-Cas9 system, the efficiency of genetic modifications has been found to vary depending on the single guide RNA (sgRNA) used. A variety of sgRNA properties have been found to be predictive of CRISPR cleavage efficiency, including the position-specific sequence composition of sgRNAs, global sgRNA sequence properties, and thermodynamic features. While prevalent existing deep learning-based approaches provide competitive prediction accuracy, a more interpretable model is desirable to help understand how different features may contribute to CRISPR-Cas9 cleavage efficiency. Results We propose a gradient boosting approach, utilizing LightGBM to develop an integrated tool, BoostMEC (Boosting Model for Efficient CRISPR), for the prediction of wild-type CRISPR-Cas9 editing efficiency. We benchmark BoostMEC against 10 popular models on 13 external datasets and show its competitive performance. Conclusions BoostMEC can provide state-of-the-art predictions of CRISPR-Cas9 cleavage efficiency for sgRNA design and selection. Relying on direct and derived sequence features of sgRNA sequences and based on conventional machine learning, BoostMEC maintains an advantage over other state-of-the-art CRISPR efficiency prediction models that are based on deep learning through its ability to produce more interpretable feature insights and predictions. 
    more » « less
  9. ABSTRACT The time variability and spectra of directly imaged companions provide insight into their physical properties and atmospheric dynamics. We present follow-up R ∼ 40 spectrophotometric monitoring of red companion HD 1160 B at 2.8–4.2 μm using the double-grating 360° vector Apodizing Phase Plate (dgvAPP360) coronagraph and ALES integral field spectrograph on the Large Binocular Telescope Interferometer. We use the recently developed technique of gvAPP-enabled differential spectrophotometry to produce differential light curves for HD 1160 B. We reproduce the previously reported ∼3.2 h periodic variability in archival data, but detect no periodic variability in new observations taken the following night with a similar 3.5 per cent level precision, suggesting rapid evolution in the variability of HD 1160 B. We also extract complementary spectra of HD 1160 B for each night. The two are mostly consistent, but the companion appears fainter on the second night between 3.0–3.2 μm. Fitting models to these spectra produces different values for physical properties depending on the night considered. We find an effective temperature Teff  = $$2794^{+115}_{-133}$$ K on the first night, consistent with the literature, but a cooler Teff  = $$2279^{+79}_{-157}$$ K on the next. We estimate the mass of HD 1160 B to be 16–81 MJup, depending on its age. We also present R = 50 000 high-resolution optical spectroscopy of host star HD 1160 A obtained simultaneously with the PEPSI spectrograph. We reclassify its spectral type to A1 IV-V and measure its projected rotational velocity $$\upsilon \sin i$$ = $$96^{+6}_{-4}$$ km s−1. We thus highlight that gvAPP-enabled differential spectrophotometry can achieve repeatable few per cent level precision and does not yet reach a systematic noise floor, suggesting greater precision is achievable with additional data or advanced detrending techniques. 
    more » « less
  10. Abstract Extremely large telescopes (ELTs) provide an opportunity to observe surface inhomogeneities for ultracool objects including M dwarfs, brown dwarfs (BDs), and gas giant planets via Doppler imaging and spectrophotometry techniques. These inhomogeneities can be caused by star spots, clouds, and vortices. Star spots and associated stellar flares play a significant role in habitability, either stifling life or catalyzing abiogenesis depending on the emission frequency, magnitude, and orientation. Clouds and vortices may be the source of spectral and photometric variability observed at the L/T transition of BDs and are expected in gas giant exoplanets. We develop a versatile analytical framework to model and infer surface inhomogeneities that can be applied to both spectroscopic and photometric data. This model is validated against a slew of numerical simulations. Using archival spectroscopic and photometric data, we infer starspot parameters (location, size, and contrast) and generate global surface maps for Luhman 16B (an early T dwarf and one of our solar system’s nearest neighbors at a distance of ≈2 pc). We confirm previous findings that Luhman 16B’s atmosphere is inhomogeneous with time-varying features. In addition, we provide tentative evidence of longer timescale atmospheric structures such as dark equatorial and bright midlatitude to polar spots. These findings are discussed in the context of atmospheric circulation and dynamics for ultracool dwarfs. Our analytical model will be valuable in assessing the feasibility of using ELTs to study surface inhomogeneities of gas giant exoplanets and other ultracool objects. 
    more » « less